Visual servoing by Lyapunov-guaranteed
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Abstract—In this paper, we use on-line 1-step genetic al-
gorithm (1-step GA) to recognize the 6-D object in a much
bigger space comparing with other recognition methods, then
we guarantee the convergence of this method by Lyapunov
theorem. In application field, we use this 1-step GA method into
visual-servoing simulation in which by a 10-link manipulator
hand and eye-vergence system, where Lyapunov method is
utilized to guarantee the visual tracking convergence to a
moving target and visual servoing to the target is also confirmed
by the Lyapunov method.

I. INTRODUCTION

Tasks in which visual information are used to direct a
manipulator toward a target object are referred to visual
servoing in [1], [2]. This field is the fusion of many areas,
such as kinematics, dynamics, image recognition, and control
theory. This paper deals with problems of the real-time 3-
D pose (position and orientation) recognition of a target for
visual servoing and the convergence proof of this recognition
algorithm.

There is a variety of approaches for 3D target object
pose estimation, and they can be classified into three general
categories: (1) feature-based, (2) appearance-based, and (3)
model-based. We use model-based method in our research.
The matching degree of the model to the target can be
estimated by a function, whose maximum value represents
the best matching and can be solved by GA, using the
matching function as a fitness function. An advantage of our
method is that we use a 3D solid model which enables it to
possess six degree of freedom (DOF), both the position and
orientation, without following hindrances. In other methods
like feature-based recognition, the pose of the target object
should be determined by a set of image points, which makes
it need a very strict camera calibration. Moreover, searching
the corresponding points in Stereo-vision camera images is
also complicated and time consuming, e.g., [3].

GA is well known as a method for solving parameter
optimization problems [4]. The GA-based scene recognition
method described here can be designated as “evolutionary
recognition method”, since for every step of the GA’s evolu-
tion, it struggles to perform the recognition of a target in the
input image. To recognize a target by CCD camera in real-
time, and to avoid time lag waiting for the convergence to a
target, we used GA in such manner that only one generation
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is processed over newly input image, which we called “I-
Step GA”. In this way, the GA searching process and the
convergence to the target does not consist in one image but
the convergence is achieved in the sequence of the input
images to recognize it with real-time manner.

In this report, we present a hand & eye-vergence dual
visual servoing system with a stability analysis of Lyapunov
method, guaranteeing that both the tracking pose errors of
hand and eye-vergence converge to zero. There is no research
on eye-vergence visual servoing stability analysis, as far as
we know.

II. ON-LINE EVOLUTIONARY RECOGNITION
A. 3-D Model-based Matching

We use a model-based matching method to recognize a
target object in a 3-D searching area. A solid models is
located in X, its position and orientation are determined
by six parameters, ¥ = [r? €?]T, where r = [z,y, 2|7
€ = [e1, €2, €3)T. Here, the target’s orientation is represented
by unit quaternion [5], which has an advantage that can
represent the orientation of a rigid body without singularities,
when —7 < 6 < 7 (0 is defined below). The unit quaternion,
is defined as

[l

Q= {n €}, (D
h
where 9 . Hk o
= cos—, € = Sin=
’rl 2 ) 2 )
here, k(||k|| = 1) is the rotation axis and 6 is the rotation

angle. n is called the scalar part of the quaternion while € is
called the vector part of the quaternion. They are constrained
by

7]2 +ele=1. 3)

In (3) n can be calculated by €, so we just use three
parameters € to represent an orientation.

The left and right input images from the stereo cameras
are directly matched by the left and right searching models,
which are projected from 3-D model onto 2-D image plane.
The matching degree of the model to the target can be
estimated by a correlation function between them as F'(1))
by using the color information of the target. Please refer to
[6] for a detailed definition of F'(4)). When the searching
models fit to the target objects being imaged in the right and
left images, F'(1)) gives the maximum value. Therefore the
3-D object’s position/orientation measurement problem can
be converted to a searching problem of 1y that maximizes
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Fig. 1. AF(5v(t)) is positive definite

F(%). We solve this optimization problem by 1-step GA
method that will be explained in the next section.

B. GA-based On-line Recognition “I-step GA”

Theoretically optimal pose v,,,..(t) that gives the highest
peak of F'(1)(t)) is defined as

Pmaa(t) = {9(1) | wiE F(ip(t) } 4)

where L represents 6-DoF
z,Y,z,€1,€2,€3. X

An individual of GA is defined as 4 (¢), which means the
i-th gene (i = 1,2,--- ,p) in the j-th generation, to search
Y0z (t)- Denote @bmam( ) to be the maximum among the p
genes of 1/)’ (t ) in GA process,

Yrmaa(t) = {9](1) | max F(y](1)}. (5)
Plel

i

searching space of

In fact we cannot always guarantee the best individual of
GA %S4 (t) should coincide with the theoretically optimal
pose ,,..(t), because the number of GA’s individuals is
not infinite. The difference between ,,,,(t) and $C2 (1)
is denoted as

61#@) = w'maa: (t) - ¢7€Lﬁm (t) (6)

And the difference between F(1,,,.(t)) and F (52 (1))
is denoted as

AF(G(1) = F(0 (D) — F@WSE®), (D)
Since F(h,, (1)) 2 F (52, (1)), we have
AF(53p(1))>0. ®)

Based on the definition of AF(d1)(t)) in (7), in this research,
we let GA work in the following way:

(a) GA evolves to minimize AF(d1p(t)).

(b) The elitist individual of GA is preserved at every
generatlon (elitist gene preservation strategy).

(¢) 54 (t) does keep the same value in the evolving
when the evolved new gene with different value gives
the same value of AF.

Here, we present two assumptions.

[Assumption 1] AF(61p(t)) is positive definite.

This means the distribution of F(¢)(t)) satisfies
AF(51(t)) = 0 if and only if dep(t) = 0, which indicates
AF(d(t)) = 0 has a sole minimum at dt(t) = O
over the searching space L, even though AF' is multi-peak
distribution having peaks and bottoms with limited number.
When the model overlap the target object in the image, then
the situation can make AF' have the sole minimum in L.
0 < F(y(t)) <1, since F(e(t)) is normalized to be less
than 1 and negative value to be set as zero by a definition
of correlation function F'(3(t)) ([7]). So the fitness function
is always less than 1 except only one point which means
the ’(bm(w( ) can express the target object’s pose as shown
in Fig. 1(a). From (7), we can see when C% (¢) = 1,
AF(d¢(t)) = 0 (Fig. 1(b)), which means that only in this
case, ngijm( t) can express the actual pose of the target
object.

[Assumption 2] F'(yC2 (1))>0.

This means GA evolves itself to get a bigger fitness
function value (EF(¥54 (t)) > 0) or keep a same value
(B (9S4 (t)) = 0). It is not only an assumption but also
the character of GA if the target object is static, because
the elitist individual is preserved in every generation of GA.
However, when the target object is moving, F/(1S4 (£))>0
will indicate that the convergence speed to the target in the
dynamical images should be faster than the moving speed
of the target object. Furthermore, with the pose tracking
in dynamic scene being 1nput at a certain video rate, this
assumption means that F(¢C (t)) have the tendency of
approaching to F(v, . (t)), and ¥4 (t) moves toward
Y,,4.(t) in each period of the input image, or keeps a
distance to ,,,,,.(t). Since in this paper we think that the
object’s motion is enough slow comparmg the calculation
speed of GA’s evolving to find F (1S4 (t)) from the view
point that the one image be input every input video period
and evolving iterations in 1nput video period are enough to
catch up with the F(S4 (1)) being stationary during the
input video period.

Differentiating (7) by time t, we have

AF(S%(t) = F (3,0, (1) — (s (1)). )

We defined F(v,,,,(t)) = 1 representing that the
true pose of the target object gives the highest peak.
Therefore, the time differentiation of F(vp,,,,.(t)) will be
F(1,,4.(t)) = 0. Thus, from (9) and [Assumption 2], we
have

AF(59(1)) = —F(¢170,(1))<O0.

1/:,%;( t) represents current best GA solution. [Assumption
2] means GA can change its best gene 1/),,“13:( ) to always
reduce the value of AF regardless of dynamic image or static
one, which indicates that the convergence speed to the target
in the dynamically continuous images should be faster than
the moving speed of the target object.

We cannot guarantee that the above two assumptions

always hold, since they depend on some factors such as

(10)
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Fig. 2. The invariant set of the solutions of AF(81)(t)) = 0.
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Fig. 3. The changing of AF(§4(¢) with respect to time ¢ in the whole
GA’s evolution.

object’s shape, object’s speed, definition of F'(t(t)), pa-
rameters of GA and viewpoint for observing, lightening
environment, computer’s performance et al. However, we
can make efforts to improve the environment and correlation
function and so on. Providing above two assumptions be
satisfied, (8) and (10) hold, then AF(dv(t)) is so-called
Lyapunov function. The objective here is to verify that
d1p(t) asymptotically stable, resulting in it converges to 0
by using the Lyapunov function of AF(d1)(t)), meaning
G () —,,..(t), (t—00), and the following shows
the way.

Since AF(d4p(t)) is only negative semi-definite, in the
view of LaSalle theorem, d1)(¢) asymptotically converges to
the invariant set of the solutions 1) satisfying AF (5v(t)) =
0. Considering the following expression,

. OAF .

AF(oY(0) = G- =0
the first part OAF /91 describes partial differentiation
of AF with respect to v, implying steepest descending
direction of AF in the space of dv; the second part dap
describes the difference between the moving speed of the
target object and the evolution speed of the best gene of
GA, by the definition in (6).

Equation (11) shows the invariant set of the solutions
of AF(é'zp(t)) = 0 includes (1): P, the solution set of
OAF /069 = 0; (2): P, the solution set of d3p = 0; and
(3): P4, the solution set satisfying 0AF /95 # 0, S #0,
but their inner product is 0.

As shown in Fig. 2, P; includes the points of J1) that
give the local maximum or minimum values of the function
AF including 0. The number of these points is finite by
[Assumption 1] denoted by p, that is

Py ={0,6%,0%,,- - ,0%, 1}

(an

(12)

Concerning (1), the evolving process of GA may stay tem-
porarily at the same AF value. If the target object is static,
it means the best gene of GA stops at some moments for the
reason that the limited individuals of GA could not improve
a current solution that gives a smaller fitness function value
AF during some generations. And when the target object is
moving, 5{/, = 0 means at these moments that the evolution
speed of the best gene of GA is equal to the moving speed
of the target object, by (6). The number of these points
is assumed to be possibly finite, denoted by ¢. Thus, we
describe the set of P as

Py ={0,0%¢1,0%q0, 5¢G(q71)}'

Notice that there is another solution set of dip: Ps. In this
case, the vector of 0AF' /9 is vertical to the vector of 51
since the calculation (AF /§4))-64p in (11) means inner cross
product, which means GA evolves in the direction that keeps
a same fitness function value of AF. This GA’s evolution
way is forbidden in this research for the GA work rule (c¢)
that we have stated above. Then, Ps is null. So the invariant
set that dtp(t) asymptotically converges to is

P:P1UP2.

Here, 0%, 0%,,- -+ ,0%,_, in P are all unstable since
0F(0¢,;) >0 (i = 1,2,--- ,p—1), and only é3p = 0
is stable from [Assumption 1], since when t — oo, there
should always remain the possibility to get out of local
maximum/minimum of §1p; - --d%p,_;. And all the points in
P; except the point O are unstable because GA has possibility
to get out of these points by its evolving nature. Therefore,
0 is the only stable point in the invariant set of P, that is,
d1p(t) will finally converges to 0. The image of the changing
of AF(d(t)) with respect to time ¢ in the whole GA’s
evolution is shown in Fig.3.

The above verification shows d1p(¢)—0, which means

13)

(14)

w?ﬂéx(t)_>¢7nax(t)a (t—>OO) (15)
Let t. denotes a convergence time, then
6% (8)] = [Pman (t) = Yz (IS, (e>0,62t)  (16)

In (16), € is tolerable extent that can be considered as
a observing error. Thus, it is possible to realize real-time
optimization, because 1/;,%2% (t) can be assumed to be in the
vicinity of the theoretically optimal ,,, . (t) after ¢..

Above discussion is under the condition of continuous
time. Here, when we consider evolution time of each gener-
ation of GA denoted by At. The GA’s evolving process is
described as

evolve

Pl () It 4 AL). (17)

Obviously, this time-discrete evolution with the interval of
time At may enlarge the recognition error dt(t). Should
this undesirable influence of At be considered, the tolerable
pose error € will expand to € as,

|69 (t)|<€’, (€' >e>0). (18)



Since the GA process to recognize the target’s pose at the
current time is executed at least one time with the period
of At as the current quasi-optimal pose %S4 () is output
synchronously, we named this on-line recognition method
as “ 1-step GA”. We have confirmed that the above real-
time optimization problem could be solved by “1-step GA”
through several experiments to recognize swimming fish [8]

and human face [9].

III. DYNAMICS OF HAND AND EYE

The equation of motion of a robot is

M(q)Gg+h(q.9)qg+g(q) =T

here we define
qs qs TE
s = = v =
dr |:q9]aQL |:q10:|7E {WE]

q1
the compensation of robot’s dynamics the outputs:

T =M(q)¢+h(q,q4)q+g(q)

Taking the compensation (20) into (19), closed loop dynam-
ics is:

19)

dg =
qr

(20)
q=¢

_ | 98 | ¢s
. 7¢R_|:¢9:|’¢L_|:¢101|7
¢7

On the other hand the position compensation of the end-
effector is:

21

é1
Pp = :

a, =py+ Kp,Ap,r + Kp,Apy (22)

here

Apyr = P4 — Pr (23)

here, p;, and pp means the desired position and actual
position of the end-effector.
The orientation compensation of the end-effector is:

a,=wy+Kp,Awgp + Kp, Rp¥eir (24)

and

Awip = wy — WEg (25)

here, wy and wp means the desired angular velocity and
actual angular velocity of the end-effector, where K p_ and
K p, are suitable positive definitive feedback matrix gains.
E e .5 means the orientation error between the desired and the
actual end-effector orientation, while the letter in the top left
corner express the coordinate where the vector or the rotation
matrix is expressed in. When there is no letter on the top left
corner it means the vector or the matrix is expressed in the
world frame. Pey can be calculated by (2).
¢ can be calculated by:

¢ =

JE(qE)({Z’:} ~ Jo(gp.drs) (6

here we define a al,all”

The compensation of the camera is:

T =

Eaco = Ewd + KDOAEwdc + KPOERccedc 27

“e4. which means the orientation error between the desired
and the actual camera orientation expressed in the camera
coordinate, can be also calculated by (2).

Take the right camera as an example, ¢ can be calculated
as:

PR = EJJ}%(‘IR)(EUJRO - EJR(QR)‘;'IR)

here, J g is the Jacobian matrix from the world coordinate to
the end-effector, ¥J  is the Jacobian matrix from the end-
effector to the right camera, the equations will be introduced
more detailed in the section 5.

Take (26) and (28) into (21) we have

(28)

a = Je(ap)ip+Je(dp)ds (29)
Pap, = PJIr(qr)ir+"Jr(ar)ar (30)
SO
Pr _ ap
] - le @
Por = Pago (32)
Eor = Eap, can be deduced in the similar way.
Submit (22), (24) into (31), then we have
Pi Pa+ Kp,Apsp + Kp,Apyp (33)
wp = @i+ Kp,Awip+ Kp,RpPein  (34)
submit (27) into (32), we have
Eo, = Foy+Kp,APws + Kp PR eq. (35)
Finally we get closed loop hand camera motions are,
Apyg + Kp,Apsg + Kp,Ap;p = 0 (36)
Awyg +KDOAwdE +KPOREE€dE = 0 (37
AE";)dc + KDOAEwdc + KPOERCCEdc = 0 (38)

IV. PROVE OF THE CONVERGENCE OF THE SYSTEM BY
LYAPUNOV METHOD

Here, we discuss about the convergence of our proposed
Hand & eye vergence dual visual servoing system. We invoke
a Lyapunov argument, the feed back gains are taken as scalar
matrices, i.e. Kp, = Kp I, Kp,=Kp I, Kp, = Kp,I
and Kp, = Kp I. Here we assume that the feedback gains
of the links are the same.

ApipK P, AP + ApipAbyg
1
+Kp,((nae —1)* + Peip"ean) + §AW§EAWdE

1
FEp (Fae = 1) + € eae) + 5 AP0 A wae
>0 (39



SO

—20pp(Abyp + Kp,Apyp)

+2KP0((ndE - 1)7]dE + EngEédE) + AngAwdE
+2Kp, (("nae — 1)Piac + €l €ac)

+AFWET AP Gy, (40)
from (36) we can know that
Apyg + Kp,Apyp = —Kp,Apyp “4n
from the quaternion definition we can know that [5]
NiE = —%EegEAEwdE (42)
and
Prge = — 5 e M wae 43)
and
Peus = SB(us”en)dPom @
. 1
‘€gc = §E(C77dm “€qc) AW (45)

where E(n, €) = nI — S(e€). Substitute (37), (38), (41), (42),
(43), (44) and (45) into (40) we can get

v = —2Kp ApipApyy — Kp,AwlpAwip
~Kp, APwl AFw, <0 (46)

For Kp, and Kp, are positive-definite, only if when
Ap,p = 0, Awgeg = 0 and Awg, = 0, ¥ = 0, For
Ap,r = 0 then Ap,p = 0, from (36), we can know that
Apyr =0, When Awygp =0 and Awg. =0, Awgep =0
and Awg. = 0, from (37) and (38) we can know Fegp =0
and “€4. = 0. The definition domain of 6 is (—m,7), so the
manipulator and the cameras asymptotically converge to the
invariant sets s, s, and s:

sp = {Apyp =0, Apyp = 0} 47)
so = {nieg=1," e =0, Awgz =0}  (48)
Se = {ndc = 1, Cfdc = Oa AE"‘)dc = 0} (49)
Thus, the hand & Eye-vergence visual servoing system

will be converged to the sets s, s,, S., as shown in (47),
(48), (49). (47) and (48) shows the hand is exponentially
stable for any choice of positive definnitive K D, K Pys
KDO, KPD’ thus.

tlglgo Wrpgpi=0 tlggo Wipgpi=0 (50)
tlirgoEAe =0 lim Wi = 0. (51)
Then we have
Jin PTea=1 Jin *Fea=0 (3
Substituting Eq. (52) to Eq. (56), we have
Jin, "T = Jim *Ty &

Eq. (53) proves stable convergence of visual servoing.

Y, Cartesian Hand visual servoing loop
control law

A
Eye- Vergence servoing loop|

S 1§

Fig. 4. Visual servoing system of PA-10
(49) shows
(54)

lim “eq. = 0, lim ng. =1
t—oo t—o0

so the rotation matrix from the actual orientation to the
desired orientation of the camera R4, will [5] :

Jim “Rge = lim (°n3. — €l Ceqe) I + 2%€4. €],
+2C77dcs(cedc)
= I (55)

The orientation error can exponentially converge to O.

V. HAND & EYE VISUAL SERVOING
A. Desired-trajectory generation

The desired relative relationship of X5, and X g is given by
Homogeneous Transformation as “4T" (), the difference of
the desired camera pose X g4 and the actual camera pose X g
is denoted as T . T 14 can be described by

ETpe = PTu((t) MTralt),

Notice that Eq. (56) is a general deduction that satisfies
arbitrary object motion WT'j,(t) and arbitrary objective of
visual servoing F9T ().

Differentiating Eq. (56) with respect to time yields

(56)

B oa(t) = ETar ()M T pa(t) + T ar ()M T pa(t), (57)

Differentiating Eq. (57) with respect to time again

Ema(t) = ETar ()M Tpalt) + 25 Tar (M T pa(t)+
By (t)MT ga(t), (58)

Where, " T pg, MTga, MT Eq are given as the desired visual

servoing objective. Ty, ETh;, £Ty; can be observed by
cameras using the 1-step GA method.

B. Hand & Eye Visual Servoing Controller

The block diagram of our proposed hand & eye-vergence
visual servoing controller is shown in Fig. 4. The hand-visual
servoing is the outer loop.

Here, we just show main equations of the hand visual
servoing controller that are used to calculate input torque T
as:

dpq = JE(CIE)([ Zi } - JE(‘IEaQE)QE) + (I_

Ji(ap)Je(ar)) (Epy(ag, —ap) + Ea(0 — dg)), (59)



Here, g is a 7 x 1 vector representing the angles of the first
7 links of the PA-10 manipulator. The quaternion error from
the actual orientation to the desired orientation of the end ef-
fector £ A€ can be extracted from the transformation T g,
and the other error variables in (22), (24) are described in
Yw, which can be calculated by the transformation ET e,
ET pa, BT g in (56), (57), (58), using the rotational matrix
W Rg(q) through coordinate transformation.

And J5(qp) in (26) is the pseudo-inverse of Jr(qy)
given by Ji(qp) = JE(TpJE)-1. Kp, Kp,, Kp,,
K p, are positive control gains.

The eye-vergence visual servoing is the inner loop of the
visual servoing system shown in Fig. 4. In this paper, we
use two pan-tilt cameras for eye-vergence visual servoing.
Here, the positions of cameras are supposed to be fixed on
the end-effector. For camera system, gs is tilt angle, g9 and
q10 are pan angles, and gg is common for both cameras. As
it is shown in Fig. 5, FPa,, Py, Fzy, express position of
the detected object in the end-effector coordinate, 3. The
desired angle of the camera joints are calculated by:

Ggd = atan?(EzM7 EyM) (60)
qoa = atan2(Fzy, —lsp +Fxyy) (61)
qiod = atanQ(EzM7 lsr, + ExM) (62)

where lg;, = lsg = 150[mm] that is the camera location.

1 cosgs .
For=|0 0 [?S} (63)
0 singsg 0
define
1 cosgqgg
Egr=10 0 (64)
0 singsg

here J j is the Jacobian matrix from the end-effector to the
right camera, ¢ = [s, do]”, (63) also can be written as

E

wr = YTrap (65)
and
Pwra =" T radra (66)
and £y can be calculated by:
Béspa =PI padpa + ¥ T rall pas (67)

and the quarternion error from the actual orientation to the
desired orientation of the right camera *Ae can be calculated
by [gs, qo] and [gsq, goa), S0 the compensation of the joint of
the right camera can be calculated by:

¢r="J%(ar)Par, —

In the similar way we can calculate the desired angular
acceleration of the left camera. By controlling the cameras
we can get better observation effect to decrease ™ T 4 and to
move the end-effector to the desired position and orientation

EIr(ar)ar) (68)

. M |
Object I

Fig. 5. Calculation of tilt and pan angles

By the controller of the whole hand & eye-vergence dual
visual servoing system is:

oy
o= | op (69)
?10
T=M(q)¢ +h(q,q4)qd+g(q). (70)

Here, 7 is a 10 x 1 vector, and T means the input torque of
the 7-links manipulator and 3-links camera system.

VI. CONCLUSION

In this paper, we use on-line 1-step genetic algorithm (1-
step GA) to recognize the 6-D object in a much bigger space
comparing with other recognition methods, then we guaran-
tee the convergence of this method by Lyapunov theorem,
and apply it into simulation, and prove the convergence of
motion of the system by Lyapunov theorem. In the future
we will improve the stability and recognition speed of this
method, and apply it into more fields.
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